Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients

نویسندگان

چکیده

In this paper, we study the construction of a cyclic appointment schedule in an outpatient department. particular, determine capacity distribution between elective and urgent patients scheduling time slots reserved for these such that operational waiting times are minimised. The proposed solution methodology devises Pareto set schedules based on with different allocations patients. An approximation non-dominated is obtained using multi-objective archived simulated annealing heuristic. To accurately validate schedules, incorporate decision-making via individual end, simulate variability, i.e., patient arrivals, no-show behaviour, punctuality scan durations, real-life input data. assigned one-by-one online rule. Computational experiments conducted case study. We compare rules discuss impact timing schedules. results show types, all have significant impacts times. Appointment improve when spread equally over throughout days considered Bailey–Welch rule used to Trade-offs resulting from distributions or slot exemplified front. method outperforms relevant single-pass methodologies, demonstrate its performance strengthened thanks integrated optimisation strategic, tactical decisions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

Full Elite Sets for Multi-objective Optimisation

Multi-objective evolutionary algorithms frequently use an archive of non-dominated solutions to approximate the Pareto front. We show that the truncation of this archive to a limited number of solutions can lead to oscillating and shrinking estimates of the Pareto front. New data structures to permit efficient query and update of the full archive are proposed, and the superior quality of fronta...

متن کامل

Multi-Objective Optimisation for Information Access Tasks

Information access tasks involve setting a large number of model parameters (such as term weighting functions or the particular terms from the document collection to use in the model); in addition, information access tasks frequently attempt to satisfy multiple competing objectives, such as precision and recall. We investigate the use of multi-objective evolutionary algorithms for finding model...

متن کامل

Multi-objective optimisation for regression testing

Regression testing is the process of retesting a system after it or its environment has changed. Many techniques aim to find the cheapest subset of the regression test suite that achieves full coverage. More recently, it has been observed that the tester might want to have a range of solutions providing different trade-offs between cost and one or more forms of coverage, this being a multi-obje...

متن کامل

Designing cyclic appointment schedules for outpatient clinics with scheduled and unscheduled patient arrivals

We present a methodology to design appointment systems for outpatient clinics and diagnostic facilities that offer both walk-in and scheduled service. The developed blueprint for the appointment schedule prescribes the number of appointments to plan per day and the moment on the day to schedule the appointments. Themethod consists of twomodels; one for the day process that governs scheduled and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Operations Research

سال: 2022

ISSN: ['1572-9338', '0254-5330']

DOI: https://doi.org/10.1007/s10479-022-04628-0